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Abstract
A class of generalized coherent states is constructed for a polynomial su(2)

algebra in a group-free manner. As a special case, the coherent states for the
cubic su(2) algebra are discussed. The states so constructed reduce to the usual
SU(2) coherent states in the linear limit.

PACS numbers: 03.65.−w, 02.30.Ik

1. Introduction

In the present paper, we construct a class of coherent states for a polynomial su(2) algebra by
minimally generalizing the usual SU(2) coherent states. The polynomial su(2) algebra is a
deformed algebra whose generators obey the following relations,

[Ĵ 0, Ĵ±] = ±Ĵ±, [Ĵ +, Ĵ−] = �(Ĵ 0) (1)

where �(Ĵ 0) is a polynomial in Ĵ 0. This algebra accommodates the quadratic and the cubic
algebra as special cases. The cubic algebra was first considered by Higgs [1] and by Leeman [2]
in dealing with the harmonic oscillator and the Kepler problem on a two-dimensional sphere,
while the quadratic algebra was first analyzed by Sklyanin [3] in conjunction with the quantum
group. The cubic algebra, in particular, has appeared in various areas of study including the
identical particle symmetry in two dimensions [4], the Calogero model [5], multiphoton
processes [6, 8], quantum dot problems [7] and others. In recent years, considerable attention
has been given to the construction of coherent states for such nonlinearly deformed algebra.
In [9], Cannata, Junker and Trost constructed coherent states for the quadratic su(1, 1) algebra
stemming from supersymmetric quantum mechanics by demanding them to be eigenstates of
the noncompact operator in much the same way that Barut and Girardello [10] constructed the
SU(1, 1) coherent states. In [8], Sunilkumar et al proposed a general framework for finding
coherent states of polynomially deformed algebras including the quadratic and cubic algebras,
and used the procedure to construct the polynomially deformed su(1, 1) coherent states for
quantum optics.

In this paper, we first construct a class of Perelomov-like coherent states for a nonlinearly
deformed su(2) algebra of Bonatos, Danskaloyannis and Kolokotronis [13]. Since an analogue
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of the usual exponential map from su(2) to SU(2) can hardly be found, Perelomov’s group-
theoretic procedure [11] is not immediately applicable in construction of the coherent states
for the nonlinearly deformed su(2) algebra. The approaches taken in [9, 8] are also unsuited
to our purposes. Thus, giving up the group-theoretic procedure as Klauder [14] advocated
in constructing the hydrogen atom coherent states, we generalize minimally the usual SU(2)

coherent states [12]. Then we choose the structure function of the algebra so that the deformed
algebra is specified to be a polynomial su(2) algebra of odd degree 2p − 1 which includes
the cubic su(2) coherent states (p = 2) as a special case. We also show that the cubic SU(2)

coherent states reduce smoothly to the usual SU(2) coherent states when an appropriate linear
limit is taken.

2. Polynomial su(2) algebra

In [13], Bonatsos, Daskaloyannis and Kolokotronis proposed a deformed su(2) algebra,
denoted by su�(2), which has representations similar to those of the usual su(2). In their
deformation, the three generators {Ĵ 0, Ĵ +, Ĵ−} of the algebra obey

[Ĵ 0, Ĵ±] = ±Ĵ±, [Ĵ +, Ĵ−] = �(Ĵ 0(Ĵ 0 + 1)) − �(Ĵ 0(Ĵ 0 − 1)). (2)

It is important to assume that the structure function �(x) is an increasing function of x defined
for x > −1/4. If x is an operator, it is operator-valued. The Casimir operator of su�(2) is

Ĉ = Ĵ−Ĵ + + �(Ĵ 0(Ĵ 0 + 1)) = Ĵ +Ĵ− + �(Ĵ 0(Ĵ 0 − 1)). (3)

On the basis {|j,m〉} that diagonalizes Ĵ 0 and Ĉ simultaneously such that

Ĉ|j,m〉 = �(j (j + 1))|j,m〉 Ĵ 0|j,m〉 = m|j,m〉, (4)

we have

Ĵ +|j,m〉 =
√

�(j (j + 1)) − �(m(m + 1))|j, m + 1〉 (5)

Ĵ−|j,m〉 =
√

�(j (j + 1)) − �(m(m − 1))|j, m − 1〉 (6)

with

2j = 0, 1, 2, . . . , |m| � j. (7)

In the present paper, we consider a special case of su�(2) with a structure function given
by a homogeneous polynomial of degree p,

�(x) =
p∑

r=1

αrx
r (α1 > 0, αp �= 0) (8)

where αr are real constants. Since the structure function �(x) when acting on the state |j,m〉
is required to be an increasing function of x = j (j + 1), the following condition must be
satisfied,

p∑
r=1

rαr [j (j + 1)]r−1 > 0. (9)

Here we must note that if αp < 0 then j has a maximum value jmax. This implies that the
representation space becomes finite dimensional for a given negative value of αp.

Substitution of (8) into (2) leads to the polynomial su(2) algebra of odd degree
2p − 1(p = 1, 2, 3, . . .); namely,

[Ĵ 0, Ĵ±] = ±Ĵ±, [Ĵ +, Ĵ−] = 2
p∑

r=1

αr Ĵ
r
0

r∑
s=1

(Ĵ 0 + 1)r−s(Ĵ 0 − 1)s−1. (10)
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which we denote by su2p−1(2). Here, p = 1 and p = 2 correspond to the usual su(2) and
the cubic su(2) case, respectively; that is, su1(2) = su(2) and su3(2) = sucub(2). Note that
if the structure function is chosen to be a polynomial in x = Ĵ 0(Ĵ 0 + 1) of degree p, then the
deformation is given by a polynomial in Ĵ 0 of degree 2p −1. Therefore, the quadratic algebra
cannot be derived from su�(2).

3. Coherent states for polynomial su(2)

In constructing coherent states for a deformed su(2) algebra, the standard group theoretical
method is not immediately applicable because of the lack of the corresponding Lie group.
Since the polynomial su(2) algebra (10) reduces to the usual su(2) when p = 1, we adopt
a simple guiding principle that the set of the constructed coherent states for su2p−1(2) will
reduce to the usual set of SU(2) coherent states in the linear limit (p = 1).

Coherent states for su�(2). First let us construct a set of coherent states for the deformed
algebra su�(2). As is in the case of su(2), the lowest state |j,−j 〉(m = −j) is taken as the
fiducial state:

Ĵ−|j,−j 〉 = 0. (11)

Operating on the fiducial state with the generator Ĵ + of the deformed algebra, we construct
the following states,

|j, ξ 〉 = N−1
� (|ξ |)eξĴ + |j,−j 〉, (12)

where N(|ξ |) is the normalization factor and ξ ∈ C. These states are similar in form to the
usual SU(2) coherent states. However, here Ĵ + is an operator satisfying the deformed algebra
su�(2) rather than the linear su(2) algebra. Thus eξĴ + is not meant to be a representative of
the coset space associated with the usual SU(2) group since no Lie group can be formed by
the exponential map of the deformed algebra.

As is evident from (5) that Ĵ +|j, j 〉 = 0, the states (12) can be expressed as

|j, ξ 〉 = N−1
� (|ξ |)

2j∑
n=0

ξnĴ n
+

n!
|j,−j 〉. (13)

Again from (5) it follows for 0 � n � 2j (−j � m � j) that

Ĵ n
+|j,−j 〉 =

√
[kn]!|j,−j + n〉 (14)

where

kn = �(j (j + 1)) − �((j − n)(j − n + 1)). (15)

In the above, we have used the factorial notation of kn to signify

[kn]! =
n∏

l=1

kl. (16)

Hence the states (13) take the form,

|j, ξ 〉 = N−1
� (|ξ |)

2j∑
n=0

√
[kn]!

n!
ξn|j,−j + n〉 (17)

or

|j, ξ 〉 = N−1
� (|ξ |)

j∑
m=−j

√
[kj+m]!

(m + j)!
ξ j+m|j,m〉. (18)
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The normalization factor is determined by

N2
�(|ξ |) =

2j∑
n=0

[kn]!|ξ |2n

(n!)2
. (19)

As has been assumed, the structure function �(x) is an increasing function of x. Hence kn � 0
for 0 � n � 2j . Thus N2

�(|ξ |) has no zeros and the states (17) are all normalized to unity.
Furthermore, from Schwarz’s inequality, it is obvious that the inner product of two states obeys

〈j, ξ |j, ξ ′〉 = [N�(|ξ |)N�(|ξ ′|)]−1
2j∑

n=0

[kn]!(ξ ∗ξ ′)n

(n!)2
� 1. (20)

The inner product is not generally zero even when ξ �= ξ ′.
The states (17) may admit the resolution of unity∫

|j, ξ 〉 dµ�(ξ, ξ ∗)〈j, ξ | = 1 (21)

provided that the following measure can be found,

dµ�(ξ, ξ ∗) = 1

2π
N2

�(|ξ |)ρ�(|ξ |2) d|ξ |2 dφ. (22)

Here we let ξ = |ξ | eiφ(0 � φ < 2π), and seek a weight function ρ�(|ξ |2) satisfying∫ ∞

0
ρ�(t)tn dt = (n!)2

[kn]!
. (23)

In this regard, we consider the set of states constructed above as a formal set of coherent
states for su�(2) with a structure function �(x) unspecified. To make them as those for the
polynomial algebra, we have to calculate [kn]! explicitly for the chosen structure function (8).

Coherent states for su2p−1(2). Substitution of the structure function (8) into (15) yields

kn = n(2j + 1 − n)χn (24)

where

χn =
p∑

r=1

r∑
s=1

αr [j (j + 1)]r−s[(j − n)(j − n + 1)]s−1. (25)

The generalized factorial of (2j + 1 − n) signifies

[2j − n + 1]! = (2j)(2j − 1)(2j − 2) · · · (2j − n + 1) = (2j)!

(2j − n)!
= n!

(
2j

n

)
. (26)

Thus the states (17) can be cast into the form,

|j, ξ 〉 = N−1
p (|ξ |)

2j∑
n=0

(
2j

n

)1/2 √
[χn]!ξn|j,−j + n〉 (27)

with the normalization,

N2
p(|ξ |) =

2j∑
n=0

(
2j

n

)
[χn]!|ξ |2n. (28)

The set of states thus obtained in (27) with the factor χn specified by (25) is indeed a set
of coherent states for su2p−1(2). Apparently the usual SU(2) coherent states are obtained
from (27) if χn = 1 for all n. Hence χn is the very factor that characterizes the nonlinear
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deformation of the SU(2) coherent states. Here it will be referred to as the deformation factor
or the χ factor in short.

The deformation factor χn is an inhomogeneous polynomial in n of degree 2p − 2, which
may be factorized, with αp �= 0, in the form,

χn = αp(n − a1)(n − a2) · · · (n − a2p−2) (29)

where ai’s are the roots of χn = 0 with respect to n. Accordingly, the generalized factorial of
χn is given by

[χn]! = χ1χ2 · · ·χn = αn
p

2p−2∏
i=1

(1 − ai)n (30)

where (a)n is the Pochhammer symbol defined by

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) = 	(a + n)

	(a)
, (a)0 = 1.

The factorial [2j − n + 1]! given in (26) may also be put in an alternative form,

[2j − 1 + n]! = (2j)(2j − 1)(2j − 2) · · · (2j − n + 1) = (−1)n(−2j)n. (31)

As a result, the factor [kn]! becomes

[kn]! = (−1)nαn
pn!(−2j)n(1 − a1)n(1 − a2)n · · · (1 − a2p−2)n. (32)

With this, the normalization factor (19) for the polynomial algebra is expressed in terms of
Pochhammer’s generalized hypergeometric function,

N2
p(|ξ |) = 2p−1F0(−2j, 1 − a1, 1 − a2, . . . , 1 − a2p−2;−αp|ξ |2), (33)

which is of course a polynomial in |ξ |2 of degree 2j as (−2j)n = 	(−2j + n)/	(−2j) = 0
for n > 2j . In this way the normalization of each coherent state is given in closed form.
Similarly, the inner product of two distinct coherent states is given by

〈j, ξ |j, ξ ′〉 = N−2
p (|ξ |) 2p−1F0(−2j, 1 − a1, 1 − a2, . . . , 1 − a2p−2;−αpξ ∗ξ ′) (34)

which is not generally zero for ξ �= ξ ′. The set of these states is overcomplete.

Resolution of unity. The coherent states thus constructed for su2p−1(2) are able to resolve
unity as ∫

|j, ξ 〉 dµp(ξ, ξ ∗)〈j, ξ | = 1 (35)

with the measure,

dµp(ξ, ξ ∗) = 1

2π
N2

p(|ξ |)ρp(|ξ |2) d|ξ |2 dφ. (36)

The weight function ρp(|ξ |2) is determined by (23). From (26) and (30) follows

[kn]! = αn
p(2j)!	(n + 1)

	(2j + 1 − n)

2p−2∏
i=1

	(n + 1 − ai)

	(1 − ai)
. (37)

Substitution of this into (30) leads to∫ ∞

0
ρp(t)tn dt = α−n

p

∏2p−2
i=1 	(1 − ai)

(2j)!

	(n + 1)	(n + 1 − ai)∏2p−2
i=1 	(n + 1 − ai)

. (38)

It turns out that the weight function is given in terms of Meijer’s G-function (see Formula
7.811.4 in [15]) as

ρp(|ξ |) = αp

∏2p−2
i=1 	(1 − ai)

(2j)!
G1 1

2p−21

(
αp|ξ |2

∣∣∣∣∣−(2j + 1),−a1,−a2, . . . − a2p−2

0

)
. (39)

With the weight function (39) for the measure (36), the resolution of unity (35) can indeed be
achieved.
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4. Coherent states for the cubic algebra

The algebra considered by Higgs for the harmonic oscillator on a sphere S2 is cubic; namely,
its generators obey the commutation relations,

[Ĵ 0, Ĵ±] = ±Ĵ±, [Ĵ +, Ĵ−] = 2αĴ 0 − 4βĴ 3
0, (40)

where α and β are positive constants. Certainly this is a special case of the polynomial
algebra (10) with p = 2, α1 = α and α2 = −β. The corresponding structure function is
quadratic in x,

�(x) = αx − βx2. (41)

In order for this �(x) to remain as an increasing function, it is necessary to meet the condition,
x = j (j + 1) < α/(2β). This condition implies that 2j of (7) has a maximum value
2jmax <

√
(2α/β) + 1 − 1 for each fixed value of α/β. The cubic nature (41) is contained

only in the deformation factor; namely,

χn = α − β[n2 − (2j + 1)n + 2j (j + 1)], (42)

which is quadratic in n. Factorizing the χ -factor in the form

χn = −β(n − a)(n − b) (43)

with the zeros,

a, b = 1
2 [(2j + 1) ±

√
(2j + 1)2 − 8j (j + 1) + 4α/β]. (44)

Note that the roots a and b are j -dependent. From (27) and (43) immediately follow the
coherent states for the cubic su(2) of the form,

|j, ξ 〉 = N−1
2 (|ξ |)

2j∑
n=0

(
2j

n

)1/2

[(−β)n(1 − a)n(1 − b)n]1/2ξn|j,−j + n〉. (45)

With (43) the normalization factor (28) becomes

N2
2 (|ξ |) = 3F0(−2j, 1 − a, 1 − b;β|ξ |2). (46)

The resolution of unity is achieved with the weight function,

ρ2(|ξ |2) = −β
	(1 − a)	(1 − b)

	(2j + 1)
G1 1

3 1

(
−β|ξ |2

∣∣∣∣∣−(2j + 1),−a,−b

0

)
. (47)

Next we wish to show that the cubic SU(2) coherent states (45) with α = 1 reduce to the
usual SU(2) coherent states in the limit β → 0. For small β the roots (44) of χn = 0 behave
as

a ∼ 1√
β

, b ∼ − 1√
β

. (48)

Thus, in the limit β → 0, [χn]! → 1 and

lim
β→0

N2
2 (|ξ |) = 1F0(−2j ;−|ξ |2) = (1 + |ξ |2)2j . (49)

The cubic coherent states (45) with α = 1 reduce to

|j, ξ 〉 = (1 + |ξ |2)−j

2j∑
n=0

(
2j

n

)1/2

ξn|j,−j + n〉 (50)
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which are the standard normalized SU(2) coherent states. By the same limiting procedure,
the weight function ρ2(|ξ |2) of (47) goes (via Formula 9.348 in [15]) to

ρ1(|ξ |2) = 1

	(2j + 1)
G1 1

1 1

(
|ξ |2

∣∣∣∣∣−(2j + 1)

0

)
= (2j + 1)1F0(2j + 2;−|ξ |2) (51)

or

ρ1(|ξ |2) = (2j + 1)(1 + |ξ |2)−2j−2. (52)

5. Concluding remarks

We have constructed a set of coherent states for a polynomial su(2) algebra based on the
nonlinear algebra su�(2) of Bonatsos, Daskaloyannis and Kolokotronis. Our discussion has
been limited to the polynomial deformation of odd degree. If the structure function �(x)

is a polynomial in x = Ĵ 0(Ĵ 0 + 1) (of either even or odd degree), the algebra is always of
a polynomial in Ĵ 0 of odd degree. Thus the constructed coherent states contain the usual
SU(2) states and the cubic SU(2) states, but preclude the quadratic SU(2) states. A different
approach is needed to construct coherent states for a polynomial algebra of even degree. If
α1 = −1, then the polynomial algebra becomes a nonlinear deformation of su(1, 1), whose
coherent states will be discussed elsewhere.
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